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Abstract

Programming multiprocessors is still a highly machine depeude,,t ,a._k

and parallel programs axe rarely portable. In our paper we will exl,lai,,

why the Force parallel programming language has been easily portable

between six different shared memory multJprocessors. We show how a

two level macro preprocessor allows us to hide low level machine depen-

dencies and to build machine independent high level constructs on top of

them. These Force constructs enable us to write portable pxrallcl pro-

grams largely independent of the number of processes and independent of

the specific shared memory multiprocessor executing them.





1 Introduction

All manufacturers of multiprocessors provide with their machines sore<" .q_,pporf

for parallel programming. But this support is very machine depende.t and oftc_

only at a low level.

In this paper we present a method for providing highly portable lang_lagc

support for parallel programming using macro preprocessors. We show how

to construct high level control oriented language structures based on machitle

independent intermediate level structures, which are in turn based on machi,le

dependent, manufacturer supp|ied constructs. By doing this, we identify ;.be

key machine dependent constructs for multiprocessing support.

The Force [Jor87,.IBAR87], a parallel programming language for large scale

shared memory multiprocessors has been successfully implemented and ported

to a variety of systems using this methodology.

We will begin with an argument for parallel programming and an overview

of related work. We briefly present the Force language concepts for parallel

programming. In the remainder of the paper a detailed description1 of the in_-

plementation of the Force and its portability to different multiprocessors will be

given.



2 Motivation and Related Work

Vectorizing and parallelizing compilers have been used in the pasl 1o co,_-crl

sequential programs into vector and parallel forms. But except ii_ J.clatively

regular cases the compilers have been unable to detect concurrency iJJsequential

programs. More importantly, compilers cannot come up with m,_v, l_r_lh'l

solution algorithms. Therefore parallel programming languages at,: needed to

allow development of parallel programs.

Current multiprocessor manufacturers provide support for paralH l_ro_ram -

ruing. But experience shows us that development and maintenance of l_arallcl

programs using that support is a complex and difficult task. It r_'q,ires Lhc

scientific or application programmer to have an intrinsic knowledge of the basic

parallelism concepts and their use, which is different for each machi_e.

The tremendous effort spent on design and implementation of l_rograms

would only be cost effective if they can be ported to a large class of m_,It.ipro-

cessors for hardware independence [LO87]. [fthe parallel programming language

used could be ported to other target machines using their parallel programmill_

tools, then the progran_ written in that language would also be portable.

The Force has been designed around these ideas. It is a parallel programming

language designed for large scale shared memory mu]tiprocessors which _x,ol_'_l

in the course of implementing numerical algorithms. Being a language c.xlcllsioJ_

to Fortran, it is implemented With a macro preprocessor. Work is not ;_,si_.,._l I_

specific processes, but distributed over the entire force of processes by parallel
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constructs. The variables on which work is performed are either imiformly
r

shared among all of the processes or strictly private to a single prc_c,.._g. Th,.

key ideas embodied in the Force are global parallelism, independence of t.hc

number of processes executing a parallel program, high performanc,: of a.ighal_

coupled programs, suppression of process management, and reliance on generic

synchronizations. "Generic" in this context means that the processes do not

have to be explicitly specified for the synchronization operations.

Similar work on multiprocessor programming languages has been doae for

EPEX/Fortran [DGNP88] and for the Uniform System library o,i the BBN

Butterfly [TC88]. The parallel programming language Linda [GCCC85] a01d

the work at the Oregon Graduate Center on Large Grain Data Flow [Bab84],

as well as Dongarra's work on SCHEDULE [DS87] are closely related, because

they also address the scheduling problem on multiprocessors.

The implementation of the Force relies on the constructs for process cre-

ation, synchronization, and shared memory designation provided by Ihe targc!

multiprocessor. Hiding these machine dependencies from the user by dcfi,iag a

machine independent parallel programming language is one key achievement of

the Force.

The Force has been implemented on the HEP, Flex/32, Encore Multimax,

Sequent Balance, Alliant FX/8, and Cray-2 multiprocessors.

Implementation of the Force on systems involving several, rath_:r differcnl

process models has not been difficult, and porting it between machines with



similarsystem supported primitives is almost trivial. Given the f_,irly strong

differences between the machines already hosting the Force, we expcel ,o ,11aio,"

dimculties in porting the system to any shared memory multiproccssor

3 Key concepts in the Force programming lan-

guage

The parallel programming primitives introduced by the Force have bccn kept

conceptually small, each embodying only one concept. The Force laag_lage

concepts can be divided into four classes: program structuring, variable claxsi-

fication, work distribution and synchronization concepts.

3.1 Parallel program structure

Parallel programs can call subroutines from existing Fortran librari,-_. In addi-

tion, parallel Force subroutines are supported by the Forcesub stateme_t. SHch

a parallel subroutine is executed by all processes concurrently.

3.2 Variable classification

The Force computational model introduces a new variable classification, whicls is

orthogonal to the Fortran local/common classification. In the same way I.hat lo-

cal/common specifies name scope between program modules, the sh,_red/l_rivat_"

classification of the Force specifies name scope between processes. Shared vari-



ables are shared between tile processes executing a Force program, whereas the

scope of private variables is restricted to one process.

Data synchronization is supported by the variable class asy.,. For' asys_-

chronous variables with a full/empty state.

3.3 Work distribution

The distribution of work between the processes can be done at run tinte, what

we call selfscheduled, or at compile time, called prescheduled.

Segments of code that can be executed concurrently, in any order, ca, bc ,li_-

tributed. In case of singly (doubly) nested loops, the loop indices (index pairs)

specify concurrently executable sequential streams of code, which are split up in

an unspecified way for concurrent execution (DOALL loops). If the concurre,ltly

executable code sections are not loop bodies, they can be distributed with the

more general Pease construct. This is a collection of independent, _d.io_s oF

code, each executed by a single process. The independent sections ca,_ he exe-

cuted conditionally or unconditionally. Again no specific sequence of execution

can be assumed.

The most general concept for concurrent code segments is Askfor [1,O83].

This construct provides a means of work distribution in cases where the degree

of concurrency is not known at compile time. Rather the program can rc.qa_.._f

during run time that a new concurrent instance of the code seg_.e_at is exe-

cuted. A yet unimplemented concept is Resolve, which would partitiotl the _t
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of processes into subsets executing different parallel code sections.

3.4 Synchronization operations

The Force provides data and control oriented synchronization mechanisms.

Data oriented synchronization is used to synchronize updating of variables

which are shared between processes. The shared variable has to be of class

Async which associates a full/empty state with the variable's value. Th,: ._taf,.

of the variable is changed with read and write access as an atomic _(:tion: to hc

more specific: A Consume waits for the variable to be full, reads the value and

sets it to empty; A Produce waits for the variable to be empty, writes its val,e

and sets it to full. The state can also be tested and initialized to empty.

Control oriented synchronization uses the two well known concepts of c,.i,.-

ical sections and barriers. At a barrier, all processes wait for each other, O,e

arbitrary process is then allowed to execute the barrier section. All olh,.r pro-

ceases are suspended until the single process leaves the barrier sectio,i. Critical

sections implement the mutual exclusion condition. Only one process at a given

time is allowed to execute within the critical section.

4 The Force Implementation

The implementation of the Force is divided into a set of machine dcpc,dc_t

macros and a set of machine independent macros. In what follows we first de-

scribe the machine dependencies, the variation between machines, and their el'-



fects on the implementation. Next we describe the machine independe.t macros

which can readily be ported to any shared memory multiprocessor.

4.1 Machine Dependent Force

The following is a list of the machine dependent macros, and these are the only

ones we use to implement all higher level language constructs:

• force_environment: declares and initializes the environment variablcs [or

the implementation of barriers and selfscheduled loops and a i.,lique pro-

cess identifier

• defineJock(var): declares a shared lock variable

initJock(var): initializes the lock variable to be unlocked

lock(var): locks the variable

unlock(vat): unlocks the variable

• shared(var): declare a variable as shared among processes

shared_common(var): declare a COMMON block as shared

async(var): declare a variable as asynchronous

async_common(var): declare a COMMON block as asynchrono.s

private(vat): declare a cariable as private (default)

private_common(vat): declare a COMMON block as private (dcralllt)

These macros define a machine independent low level parallel la,lgt,age ex-

tension for memory sharing and synchronization operations. Process creatio.



andtermination are also highly machine dependent parts of the Force macro

implementation. In the following we will detail the machine depe,idencies oF

these constructs.

4.1.1 Process Creation and Termination

The Force has a global parallelism execution model therefore, a Force prograll_

is written with the assumption of the existence of a force of proeessc_ Io exc:_'llt,.

the program. The processes are created in a Force driver which is geaeraLed

when the program is preprocessed. The processes are only terminated at the

end of the program when a Join statement is executed. The process creation

and the necessary synchronization code for joining the created proc,.._._ ar_"

done in the machine dependent driver code.

The following models for process creation have been encountered so far. The

standard UNIX fork/join process control model. This model has a large proce._s

creation and context switching cost. This prevents fine grained parallelism,

unless the parallelism is not enclosed inside the program structure. Encore and

Sequent use this model for creation of processes where a complete copy of the

data and stack is produced for each forked process. Alliant uses a varialioll _,f

this model where all data segments are shared and only tile stack is co,J.-:idL:r_'d

private. A new copy of the stack is therefore part of the process sta,e.

The second model is that of the HEP multiprocessor. Oa thi._ machine,

one can create processes with a subroutine call. The code of the st,bro_,tine is



executed by a new processin parallelwith the callingprocess. A return front

the subroutine terminates the subroutineindependently of the callingprocess.

4.1.2 Parallel Environment

A Force programmer must explicitly declare the type and storage cla._s of vari-

ables used in his program in the declaration section. In addition, the preproces-

sor provides a set of variables used to implement the Force constructs for work

distribution and synchronization, such as process number, barrier locks and ar-

rival counter, and asynchronous loop index for selfscheduled loops. Because

various multiproce.ssors handle the sharing of memory differently, the macro

which processes the user declarations and the parallel environment variahlc._ is

machine dependent:

On the Flex and HEP multiprocessors, variables are declared sharcd al com-

pile time. The macro preprocessor simply strips off the word shared and places

all shared and asynchronous variables in Fortran COMMON areas, which are

shared between the processes. This leads to the simplest implemenl.;_tion, si,ce

each separately compilable module declares its shared variables.

On the Sequent, sharing of variables is done at link time. The inlplemc,l_a-

tion must provide the linker with the names of all shared variables. The pre-

process step is used to create a startup subroutine in the main Force program

and in every Force subroutine. The startup routine in each program segment

will contain the information about the variables declared for the parallel envi-
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ronment in that routine. The startup routine in the main progran_ co.tains a

call statement to the startup routine of every Force subroutine in the program

to provide a linkage between all shared variables used throughout the program.

To provide this information to the linker, the program is run twice. Ill Ihc fir._l

run, only the startup subroutines will be executed. This run will provide the

linker commands to a UNIX shell which will take the commands in :1pipe leash-

ion to link and run the complete program with the correct linker i.formatioa

the second time.

On the Encore Multimax, the shared memory is identified at r.n time. A

process similar to the Sequent is used for generating the startup ro.ti.es al_d

providing the parallel environment. But since the sharing is done at. r.,_ I_i.1,:,

no linker commands have to be generated on this machine, and one r.n is s.f-

ficient. The shared variables are stored in shared pages, and it is i, general

the programmer's responsibility to ensure that shared variables are within the

shared page boundaries and that private variables are not. The Force relievas

the programmer from this responsibility by calculating the address of shared

pages and padding the extra space at the beginning and the end of the shared

area to ensure separation of shared and private declarations. The Allia.t i,_-

plementation is very similar to Encore except that all sharing must start at the

beginning of a page.
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4.1.3 Lock support

For synchronization operations we can use either the locks provided by the un-

derlying machine, or take advantage of hardware support for produce/conslmlc

operations, as was the case on the HEP multiprocessor with its full/empty ac-

cess state bit. A number of low level macros are used as generic lock mechallisms

for initializing, locking, and unlocking asynchronous variables. Only these low

level macros are affected when porting the Force to other machines. The various

types of locks provided by different systems are:

• software locks: spinning with test&set on shared variables (Sequcat, Ea-

core)

• system call locks: operating system handles a list of locked processes in

cooperation with the scheduler (Cray)

• combined lock: spinlock for limited time, then make operating system call

(Flex)

In some machines, locks may be scarce resources. On these machincs, somc

parallel programs may not execute as efficiently as others if a large n.mber of

asynchronous variables are needed.

4.2 Machine Independent Force

The Force implementation has been easily portable. With the exception of tile

macros just described, all macros are machine independent. This indepe,l(lenc_
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of the specific multiprocessor was achieved by the two layer implementation:

The lower level of the Force macros hides the manufacturer provided mldtipro-

cessing extensions under machine independent, low level parallelism pri,nitiw-s

for memory sharing and locks. Based on these few low level constr_JcI_, il is

possible to construct the higher level parallel programming concepts col_qd_.l,.ly

machine independent.

The identification of the basic parallelism constructs is the critical poiat. On

one side, these basic macros should be as efficient as possible for most machines.

On the other side, they have to be general enough to construct all needed high

level constructs. Our machine independent macros can be divided into iitility

macros, statement macros, and internal macros:

The utility macros are used for processing the text of the program and facil-

itating its conversion to the target form. Examples are be macros for returJling

the first element of a list, storing and retrieving definitions, concatenating and

truncating arguments, and deletion of dimensions for common declaralio_s.

The statement macros explicitly process the Force language co,lstr_ct._ in

programs. They translate them into Fortran code and low level machit_ • d,-p4-m

dent macro calls. Some examples will show how this is done:

Force: This macro defines the main Force program. It calls tl,e machine

dependent macros for parallel Force environments and startup subro_t.mc gen-

eration. It will also set a flag indicating that a main program has been defined.

All subsequently encountered Force subroutines will provide information abolJ!
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their shared variables to the main program by inserting a call statement to their

startup routine in the main program's startup routine.

Externf: Since the Fortran loader has no prior knowledge of the Forcc envi-

ronment, external Force subroutine declarations are needed whe,! Forcc st, i_ro,-

tines are to be separately compiled. The Externf macro generates tl_c startlSl_

subroutine calls in the main program.

Barrier: This macro uses generic lock macros to implement the entry codc

for a barrier construct using the Force parallel environment variables for i_arrier'

locks and arrival reporting. [AJ87]

DOALL: There are two variations of DOALLs for work distribution i,_ Ihc

Force: prescheduled and selfscheduled DO loops. The prescheduled DO loop is

completely machine independent, since only the number of executing procc_sscs

is needed to distribute the index values among processes. The selfschcduled DO

loop is more complex and requires a shared variable as the loop index whici_

must be updated by processes looking for more work. Therefore this macro will

call generic machine dependent macros for the declaration of sharcd _'ariahl_

and for synchronization. But the macro itself is not changed in the port proce._.

As an example, we will show the macro expansion for the following selfsched-

uled simple loop:

Selfsched DO 100 K = START, LAST, I|CR

(* LOOPBODY *)
100 End Selfsched DO

This will be replaced by:
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C loop entry code

lockCBARWIN)

IF (ZZNBAR .EQ. O) THEN

C initialize loop index

K_shared = START

END IF

C report arrival of processes
ZZWBAR = ZZNBAR + 1

IF (ZZNBAR .Eq. number_of_processes) THEN

unlock (BARWOT)

ELSE

unlock (BARWI N )

END IF

C self scheduled loop index distribution

100 lock(LOOPlO0)

C get next index value

K = K_shared

K_shared = K + INCR

unlock (LOOP IO0)

C test for conpletion
IF ((INCR .GT. 0 .AND. K .LE. LAST) .OR.

(INCR .LT. 0 .AND. K .GE. LAST)) THEN

(* LOOPBODY *)

GO TO 100

ENDIF

C loop exit code

lock(BARWOT)

C report exit of processes

ZZNBAR = ZZNBAR - 1

IF (ZZMBAR .EQ. O) THEN

unlock(BARWIN)

ELSE

unlock(BARWOT)

END IF

(K_shared and LOOPIO0 are the declared shared INTEGER and

LOGICAL variables; BARWIN, BARWOT and ZZNBAR ensure that all

processes have left the loop, before it can be reentered)

Pcase: Pcase is a similar construct to DOALL, which distributes differe.t
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single stream code blocks over the processes of the Force: Each block may

be associated with a condition, and any number of conditions may be t.ruc

simultaneously. The prescheduled version of this macro allocates thc hlock._

sequentially to the processes and is thus completely machine indepencle,t .-_

selfscheduled Pcase is similar to the selfscheduled do

loop in that an asynchronous variable is needed for work distribution.

Produce/Consume: Force uses the full/empty state for asynchronous vari-

ables. With the exception of the HEP computer which provided a hardwarc

full/empty state for every memory cell, all other machines require the use or

two locks for implementation of the full/empty state. In this scheme, an s._yn-

chronous variable must be empty before a procem can produce it. Two locks E

and F are associated with each asynchronous variable. An empty state corre-

sponds to E being locked and F unlocked. A full state corresponds to F being

locked and E unlocked.

A Produce process goes through the following steps to produce a val,e for

an empty asynchronous variable and to leave its state as full:

Lock F

Write to the asynchronous variable

Unlock E

Other processes trying to produce the same variable will find F locked _1_(I

will wait.

A Consume process executes the following steps to read the value of a full

16



asynchronous variable and to leave its state empty:

Lock E

Read from the asynchronous variable

Unlock F

While a Produce is in progress, a Consume process will wait until E is

unlocked. The lock and unlock operations are simply calls to the low level

macros corresponding to the generic lock mechanisms mentioned above. This

simply allows the logical steps for Produce/Consume synchronization primitives

to be carried out correctly once the low level lock mechanism of each machi,lc

is provided.

Void: This macro is used to set the state of an asynchronous variable to

empty regardless of its previous state. It is mainly used to initialize tile stat.e

of asynchronous variables and uses a similar procedure as above.

Internal macros: Finally, internal macros are used by the statement m_ros

to insert synchronization codes at various locations in the body of somc Force

constructs. In the above example ofa selfscheduled DO loop a macro to synchro-

nize the processes entering the loop, a macro to test if processes must repeat

executing the loop body, and a macro to test completion of the work by all

processes are used. These intermediate macros will call the generic machine

dependent macros.
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4.3 Implementation Structure

TheForcehas been easily portable, because only a small portion of the prepro-

cessor is machine dependent and only a rudimentary set of parallelism support

is needed from a machine.

In a UNIX environment, the compilation of Force programs proceeds in three

steps:

The stream editor sed translates the Force syntax into parameterized func-

tion macros. Then the macro processor m4 replaces the function macros wit.h

Fortran code and the language extensions supporting parallel programming.

This replacement occurs in two steps, as described above. The machine depen-

dent driver module is put at the beginning of the code. Finally the manufacturer

provided Fortran compiler and linker process the macro expanded code with the

appropriate option settings.

5 Conclusions

The Force is one of the few parallel programming languages that have been im-

plemented on a wide variety of multiprocessors. It allows users and researchers

to move prograrm between different machines, a capability crucial to h_rthcr

development in parallel programming. We have presented how macro prepro-

cessors enabled us to implement the Force on various machines withoul having

to make many changes to the preprocessor. By constructing a low level parallel
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language we were able to built high level, control oriented structures largely

independent of the specific, machine dependent multiprocessing extensions.
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